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The stability and nonlinear evolution of a ridge of fluid on an inclined plane is 
investigated. This model was introduced by Hocking (1990). Here we present 
numerical solutions of the model showing the evolution of the ridge and in some cases 
the formation of droplets. Also, we investigate the linear stability of the fluid ridge 
allowing for contact-line motion. We find a preferred wavelength for the linear 
stability of spanwise disturbances. 

1. Introduction 
The leading edge of a sheet of viscous fluid becomes unstable in the spanwise 

direction as it flows down an inclined plane. This instability has been illustrated in 
the experimental work of Huppert (1982). I n  Huppert’s experiments, a fixed volume 
of fluid was spread evenly across a plane surface and released. The fluid elongated 
into a thin sheet as the leading edge moved down the plane and when the edge had 
advanced sufficiently far, it was observed to become unstable. As a result of this 
instability, one of two possible configurations emerged : either the edge developed 
long, parallel-sided fingers advancing down the plane with the level where the roots 
of the fingers were attached to the sheet remaining fixed, or a sawtooth shape 
developed with both the points and the bases of the triangular protuberances moving 
downwards. It seems unquestionable that the appearance of this instability must 
reflect the combined action of gravity and capillarity, and that both of these eff’ects 
should somehow influence the final configuration of the sheet. Additional ex- 
perimental work on this problem has been done by Silvi & Dussan V. (1985). They 
noted in their experiments that the magnitude of the contact angle a t  the interface 
could possibly explain the two different observed configurations. By repeating 
Huppert’s experiments with the same fluid but on two different solid surfaces they 
were able to observe both the fingering and sawtooth configurations. The significant 
difference between the two experimental situations was the value of the contact 
angle. Our aim is first to investigate the evolution of the fluid sheet and to determine 
the effect of the contact angle on its evolution. This will be done by studying a model 
of a fluid ridge developed by Hocking (1990). Second, we shall investigate the linear 
stability of a fluid ridge. Here we shall find a critical wavelength of the instability 
which will be weakly dependent on the slip length of the fluid along the solid. 

At the onset of the instability, when the sheet of fluid is thin, capillarity is only a 
significant factor near the leading edge, with the sheet extending up the slope behind 
the edge controlled by gravity only. Moreover, analysis of the shape of the profile of 
the sheet in a vertical plane before the onset of t h e  instability shows the presence of 
a hump near the  edge where the height is considerably larger than in the sheet some 
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distance up the plane. This suggests that the essence of the physics can be captured 
by considering the instability of a ridge of fluid with both leading and trailing edges, 
that is, by ignoring the thin sheet of fluid extending up the plane to the fixed initial 
position of the fluid a t  the top of the plane. In  any case if a finite volume of fluid is 
used in the experiment the sheet is essentially a ridge of fluid and we would expect 
to observe the same instability (and possibly others) here as for the case of a sheet. 
Hence, independent of the ridge’s relationship to the leading edge of a fluid sheet, the 
motion of a ridge presents an interesting free-boundary problem. 

This simpler problem of a fluid ridge and its linear stability to spanwise 
disturbances was formulated and investigated by Hocking (1990). The basic state 
consisted of a thin two-dimensional strip of fluid, extending across an inclined plane. 
The motion was driven by the component of gravity down the plane, and the fluid 
motion was quasi-static; at each instant there was a balance between the 
gravitational force and surface tension, and the velocity of the ridge was fixed by the 
assumptions made concerning the contact angles at the leading and trailing edges of 
the ridge. These were taken to have a linear variation with velocity, with the excess 
of the contact angle a t  the advancing edge above its maximum static value being 
proportional to the velocity of the edge. A similar relation was assumed for the 
trailing edge. This procedure holds when the real contact angle as measured at  the 
contact line varies with velocity in a prescribed manner (see, for example, Greenspan 
1978) ; it also holds if this angle is assumed to be fixed, and the variation with velocity 
refers only to  the apparent contact angle as measured at some distance from the 
immediate vicinity of the contact line (Hocking 1981). The latter proposal may be 
necessary because of a rapid variation in the angle over a small region near the 
contact line where the standard conditions of the Navier-Stokes boundary conditions 
may have to be relaxed in order to remove, or account for, a force singularity at the 
edge itself. The relative merits of these two possibilities are discussed in Hocking 
(1992). The analysis developed in Hocking (1990) showed that the steady motion 
with the edges uniform across the span of the flow was unstable to disturbances with 
a spanwise periodic variation provided that the wavelength of the disturbance was 
sufficiently large. However, the linear growth rate was found to be an increasing 
function of the wavelength; with a channel of width d and with maximum or 
minimum amplitude of the disturbance at the sidewalls, the greatest wavelength that 
can occur in the channel is 2d, and then the leading edge will have its maximum 
displacement at one wall and its minimum at the other, with a monotonic variation 
between them. This was at variance with the observations of Huppert (1982) for the 
leading-edge instability of a fluid sheet, for which the wavelength appeared to be 
independent of the  width of the channel. 

As no critical wavelength for a channel of infinite width emerged from the linear 
analysis, it was suggested by Hocking that the selection of a preferred wavelength 
might come from a nonlinear analysis, and some numerical evidence was obtained tlo 
support this claim. More extensive and more soundly based computations have been 
undertaken, and in the first part of this paper the conclusions reached by these 
investigations are presented. One major advantage of the ridge problem over the 
corresponding problem of the extending fluid sheet is that it is easier to extend the 
calculations to the nonlinear stage. 

The linear problem for the leading edge of a fluid sheet has been discussed by 
Troian et al. (1989). They consider the linear stability of the flow near the leading 
edge of the sheet, where capillarity is an important influence. In their model no 
contact line is present, but there is a very thin film of fluid extending down the plane 
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in front of the sheet. The relevant part of the sheet as far as the stability is concerned 
is the narrow region where the height of the fluid changes from a slowly varying, 
relatively thick layer to a very thin, almost stationary film. It is this narrow region 
that is called the leading edge, although there is no edge or contact line present in the 
flow. Since there is no contact line, contact angles are irrelevant in this model, nor 
is there any necessity to remove a contact-line stress singularity by slip or some other 
means, as is essential when a moving contact line is present. Troian et al. showed that 
there was a preferred wavelength for the linear stability of spanwise disturbances to 
the leading edge, and that this wavelength was only weakly dependent on the 
thickness of the film ahead of the edge. It is also claimed, though the details are not 
presented in the paper, that  the same conclusion holds for a model with a contact line 
present. I n  order to avoid the region close to  the contact line, the calculation starts 
a t  a position where the height is small but non-zero, and the contact angle there is 
assumed to  be given. Tuck & Schwarta ( 1  990) have also performed some calculations 
for equations of the same form as those studied by Troian et al. for the basic state, 
that is, without any spanwise variation. In their calculations it is found that the 
model with a downstream film and that with a contact line yield similar solutions 
away from the region where the flow merges into the film or the contact line, in the 
two cases. This is not surprising, since the region at  or near caontact can be regarded 
as an inner region of a matched asymptotic expansion, and its function is to provide 
one boundary condition for the outer flow. The solutions found by Tuck & Schwartz 
can indeed be made identical by a suitable shift, as they demonstrate. 

Since the analysis of Troian et al. successfully predicted a preferred wavelength for 
the linear stability, it  is relevant to ask why this was not obtained for the ridge 
model. I n  Hocking (1990) it was assumed that the essential influence of the contact- 
line region could be captured by introducing the contact-angle variation and that the 
quasi-steady approximation would not significantly influence the stability of the 
ridge. Such a procedure was not of course adopted by Troian et al., because there was 
no contact line in their model, though they did include the controlling influence of 
surface tension in the narrow region where the rapid change in height of the sheet 
occurred. The second part of this paper examines more closely the ridge model and 
does not prescribe a contact-angle variation, nor does i t  involve the quasi-steady 
approximation. Rather, proper attention is paid to the slip region in the immediat)e 
vicinity of the contact line and in which the slope of the fluid can change 
substantially. The main result of this analysis is that  a preferred wavelength can be 
predicted for the ridge instability, similar to  that found by Troian et al. for the sheet. 
This wavelength is weakly dependent on the slip coefficient, which is the ratio of the 
slip length to the height of the ridge. Since this height depends on the contact angle, 
the preferred wavelength is also weakly dependent on the contact angle. As a limiting 
case, we can recover the results of Hocking’s (1990) analysis, which was based on an 
assumed contact-angle variation outside the slip region and the quasi-steady 
approximation, but this agreement can only be achieved when the slip coefficient is 
implausibly small. The conclusion is that, for the fluid ridge, there is a preferred 
wavelength for the linear stability, but i t  is ill-defined since it is weakly dependent 
on the (unknown) slip coefficient. A similar imprecision mars the conclusions of 
Troian et al., since in their case, there is a weak dependence on the (unknown) height 
of the film ahead of the bulk motion. 
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2. The equation for the ridge 
The equation for the height h of the fluid in the ridge was obtained in Hocking 

(1990) (hereafter referred to as I). If x and y are non-dimensional coordinates (see 
figure l ) ,  measured down the plane and horizontally, respectively, and if t is the non- 
dimensional time, the equation for the non-dimensional height h of the fluid in the 
ridge can be written in the form 

(2.1) 

The dimensional quantities x', y', h ,  A' and t' are defined by 

x' = aox, y' = a,y, h' = aoaoh, A' = a,a,A, t' = (3puo/yol3t, (2.2) 

where y is the surface tension, ,u the viscosity of the fluid and A' the slip length. The 
parameter a, << I is a typical value of the contact angle and so is a measure of the 
slenderness of the ridge. If the volume of fluid in a width d' of the ridge is equal to 
V', then the non-dimensional volume I/' is related to the lengthscale a, and the 
slenderness parameter a, by 

and the spanwise width of the ridge d' = a. d .  The effect of the component of gravity 
down the plane is measured by the parameter K ,  defined by 

V' = QVai d'a,, (2.3) 

pg sin Oai 
K =  , 

Y"0 

where g is gravity and 0 is the angle of slope of the plane. The positions of the leading 
and trailing edges are given by 

x = 4 Y ,  t ) ,  x = Wy, t ) ,  (2 .5 )  

and the boundary conditions are that 

I h=O a t  x = a , b ,  

a3h 
- = O ,  : = O  at y=O,d.  
ah 

a Y  a Y  

The last pair of conditions are appropriate for a periodic solution with wavelength 
2d in the spanwise direction ; alternatively they reflect the presence of sidewalls to  the 
ridge across which no fluid can pass (the prefience of boundary layers on these 
sidewalls is ignored). The condition that the total volume of fluid in the ridge remains 
constant can be written in the form 

(2.7) 

The final set of conditions needed to specify the problem relates to the assumptions 
made about the contact angle at the two edges. It takes a different form in each of 
the two problems to be studied and will be defined precisely in the relevant section. 
The lengthscale a. has not yet been specified, and a suitable choice can eliminate one 
of the paramet,ers K or V.  
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FIGURE 1 .  (a) Periodic ridge of fluid of period 2d and volume 2V, plan view. (b) Vertical cross- 
section of the ridge of fluid moving down the plane. 

3. Numerical solution of the ridge with given contact-angle behaviour 
Most of the investigations of contact-line motion have been analytical using 

asymptotic methods. Part  of the reason for this is the difficulty involved with a 
numerical solution due to the sensitivity of the evolution of the interface to the 
dynamics in the neighbourhood of the contact line. Another reason is that  there is 
not general agreement on the correct slip model for contact-line motion. Most of the 
numerical work to date (see Greenspan & McCay 1981; Hocking 1981; Haley & 
Miksis 1991) has been directed to  the lubrication model of an axisymmetric or two- 
dimensional droplet. An interesting limit of the lubrication equations occurs for 
small capillary number (a different scaling is required to see this explicitly where the 
characteristic speed is defined by the constant of proportionality in the contact- 
angle/slip-velocity relationship, see the above references). Here the motion becomes 
quasi-steady and for both two-dimensional and axisymmetric droplets, the evolution 
equations reduce to nonlinear ordinary differential equations. At leading order in the 
capillary number, the slip coefficient does not appear and hence the dynamics is 
governed by the assumed contact-angle variation at  the contact line. A similar limit 
can be applied to the ridge model (2.1), (2.5)-(2.7) and the result is the model studied 
in I. Here we shall investigate numerical and analytical solutions of these equations. 

Let us begin by defining the lengthscale by the equation 

so that, from (2.4), K = 6. The motion is initiated by making a small change in the 
position of the leading and/or training edges from a steady position with straight 
edges and no spanwise variation in h. The time-development of the leading and 
trailing edges is governed entirely by the assumed contact-angle behaviour. Hence 
we will assume as in I that the profile of the ridge is quasi-steady and is governed at  
all times by the balance between gravity and surface tension. Therefore a solution of 
(2.1) can be found from the simplified form 

a 
-V2h+6 = 0. (3.2) ax 
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This equation is t o  be solved in the region b d x < a ,  0 d y < d ,  with boundary 
conditions (2.6) and the volume constraint (2.7). 

Allowing for contact-angle hysteresis, suppose we assume that the maximum and 
minimum static contact angles are given by aa, and pa,, respectively. Following I, 
we also assume that, when the contact line is advancing, the contact angle increases 
linearly with the component of the velocity of the contact line normal to  the edge. 
At  a retreating contact line i t  was assumed in I that the contact angle decreases at 
the same rate. Here we will assume that the contact angle decreases at a rate 
proportional to p times the hyperbolic tangent of the slip velocity divided by p. For 
small velocities this is identical to the linear law but it has the advantage that as the 
magnitude of the velocity increases, the contact angle is always positive and tends 
to zero. The linear law is not applicable for velocities so large that a negative contact 
angle would be implied. Denote the interfaces x = a and x = b as C, and C, 
respectively. Because time only enters the problem through the contact-angle 
variation, we can redefine the timescale so that, when the edge a t  Ca is advancing, 
&/at is positive and the contact angle 8, along this edge is given by 

Here we have used the small-angle assumption to replace tan (8,) by 8,. Similarly, 
when the trailing edge C, is moving down the plane, %/at is positive and the contact 
angle Ob is given by 

eb = & 2., [ l + ( ~ y ] t = / 3 - / l t a n h { ~ [ l + ( ~ y ] / 3 - ' }  a Y  (3.4) 

For the cases where C, or C,  is moving up the plane, i.e. the interface a t  x = a is 
retreating or the interface a t  x = b is advancing, the obvious modifications of (3.3) 
and (3.4) must be made. When the edges are not moving, the contact angles can take 
any values between /3 and a. If there is no contact-angle hysteresis, /3 = a. 

Before we discuss the numerical solution of these equations, let us consider the 
limit where the  lengthscale in the spanwise, y, direction is much larger than the 
lengthscale in the x-direction. This implies that a t  leading order (3.2) reduces to an 
ordinary differential equation in x, for the height h. Solving this equation and 
applying the boundary conditions (2 .6)  along C, and C,, we find 

h(x,y,t) = (X-u)(x-bb)(2a-b-C-x). (3.5) 

Here Ci is a function of t and is defined by using (3.5) in the volume constraint (2.7) 

3 d  

(U-b)3dY 

8dV+- ( ~ ~ - b ) ~ d y  
C( t )  = 2 s, (3.6) 

Assume that there is no hysteresis and hence set p = a. Substituting (3.5) into (3.3) 
and (3.4), assuming a linear contact-angle variation in the retreating case, keeping 
only leading-order terms and then subtracting the results we find 

3A/at = - 2~ + +C2 - 3(A - &?)2. (3.7) 
Here we have set A = a-b. Note that there is an implicit dependence on y in the 
above differential equation because the initial values of a and b have a spanwise 
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variation. Also note from (3.6) that  for any reasonable initial data C must be 
positive. Whenever C2 < 6 4  it follows from (3.7) that  A decreases with time and 
will become zero at  a finite time at  some values of y. Hence a must equal b a t  some 
finite time and the ridge will break up into a series of droplets. Whenever C2 > 6a, 
&l/at  < 0 for A sufficiently small and droplets will again form. For larger initial 
values of A ,  i t  follows from (3.7) that A will approach a constant positive value as 
t +  co provided C(t )  tends to a constant. I n  this limit there will be no spanwise 
variation and (3.6) and (3.7) show that 

and so A = 8V/a. We will see that the numerical results predict a similar behaviour. 
Also note that in I a linear stability analysis of the ridge problem was done and 
conditions for stability and instability were determined with similar conclusions. 
This behaviour is in some sense similar to the experimental results of Silvi & Dussan 
V. (1985). They allowed the same fluid to  flow down planes made of different 
materials. On the plane with the larger static contact angle, fingers formed, while on 
the other plane with the smaller static contact angle, a coating sawtooth interface 
developed. There is perhaps some analogy between the droplets in the ridge model 
and the finger formation and between the uniform ridge and the sawtooth interface. 
I n  the former case the plane is not coated and in the second case it is. 

A solution with no spanwise variation exists, see I, i.e. h = h(x, t ) .  If we again 
assume a linear dependence of the contact angle on the slip velocity and set a = /3, 
we find from (2.6), (2.7) and (3.2)-(3.4) that A is governed by the differential 
equation, 

2a. 
dA IGV 
dt A2 
-=-- 

A solution of this equation can be written implicitly as 

(3.9) 

(3.10) 

Here we define A2, = 8V/a and A ,  is the initial value of A at t = 0. We note that as 
t + co then A +A,.  A differential equation for each of the interfaces C, and C, 
separately can also be identified. I n  I a linear stability analysis of the motion of the 
ridge about A = A ,  and governed by (3.9) was done. The result was that if Q = 
nAm/2d > 1.9987, then the ridge is linearly stable and if Q < 1.1997 then the ridge 
is linearly unstable (see I for a more general statement of linear stability). We will 
show shortly that this linear condition for stability approximately holds in the 
nonlinear case. I n  particular, we will find that a stable situation corresponds to the 
ridge with some initial perturbation evolving into a ridge with no spanwise variation, 
while the unstable case corresponds to  the formation of droplets. 

In order to  solve (3.2)-(3.4) numerically we first need to specify the initial 
conditions. Suppose that the position of the ridge for t < 0 is such that a = 1 and 
b = - 1 .  Hence the solution of (3.2) is then 

h = x - x 3 +  ~ ( 1 - . 2 ) .  (3.11) 

The slope a t  the lower edge is equal to  2 ( V +  1 )  and that a t  the upper edge is equal 
to 2(V- l ) ,  and we must have V 1 for h to  be positive between the two edges. At 
t = 0 this solution is perturbed by changing the position of one or both of the edges. 
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The solution is advanced by solving (3.2) for h with a and b known, from which the 
positions of each edge at any spanwise location can be determined according to  the 
conditions (3.3) and (3.4) if the slope lies outside the range from @ t o  a,  or by keeping 
them fixed if the slope lies inside this range. These two steps are repeated alternately 
and the evolution of the edge positions can thus be determined. 

For given initial values of C, and C ,  we can determine a numerical solution of (3.2) 
by using a boundary integral method. First introduce the two functions h, and h, as 

h =  h , - ~ ~ + c ( t ) ( h ~ - ~ ' ) .  (3.12) 

Then h will satisfy (3.2) plus the boundary conditions (2.6) if we define hi, i = 1 ,2  as 

V2hi = 0, 
with the boundary conditions 

(3.13) 

(3.14) 

for i = 1,2.  The time-dependent function c ( t )  is determined by substituting (3.12) 
into the volume constraint (2.7) 

t d V + i r  (a4- b4) d y - l l s  h, 

/Is h, ds - f [ (a3 - b3)  dy 

0 c ( t )  = 

This can be rewritten as 

3 1 ah 1 t dB-- (a4 - b4)  dy -5 Ica a2 2 ds -z lc, b2 2 ds 
4 0  

( a 3 - b S ) d y  
c ( t )  = (3.15) 

where the region S is one half of a period of the wetted region in the ( x ,  y)-plane, i.e. 
X = {(x, y) : b < x < a and 0 < y < d }  and s is arclength. Here we denote the normal 
partial derivative of h as ah/an. 

We look for periodic solutions of (3.13) of period 2d in y. This can easily be done 
with a boundary integral method by introducing the periodic Green's function of 
Laplace's equation 

G(x,  y) = (1/4n) In [sin' (ny/d) cosh2 (nxld)  + cos2 (nyld) sinh2 (nx /d ) ] ,  (3.16) 

and then using Green's theorem for the value of hi on the two interfaces. This gives 
the equation 

where the line integral is along the two interfaces C,  and C, and the values of x and 
y are also along these two interfaces. Discretizing (3.17) results in a linear system of 
equations for the values of ahpn along the two interfaces. Here we used a 
discretization of the integrals and treatment of the singularities similar to  that 
presented in Miksis, Vanden-Broeck & Keller (1981). Once ah/an is determined we 
can determine the value of c ( t )  by (3.15) and then update the interfaces by 
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for A = 0.1, OL = p = 10, V = 2.5 and d = 8.. 
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FIGURE 3. A versus t from (3.10) and the numerical results of figure 2 at y = 0. 

discretizing the slip-velocity/contact-angle relationships (3.3) and (3.4) with a 
forward Euler method in time. We have found that in several cases a smoothing was 
required and hence following Longuet-Higgins & Cokelet (1976) a smoothing of the 
normal derivatives of h along the two interfaces was applied. All spatial integrations 
were made second-order accurate while the time step was first-order accurate. Care 
in selecting the space and time steps was necessary in the droplet formation cases 
since the curvatures in the neighbourhood of the pinching-off points was large 
compared to the rest of the interface. Also we should note that when hysteresis was 
present care in selecting the time and space steps was also necessary since the 
hysteresis resulted in a discontinuous behaviour of the acceleration. The choices for 
the time and space steps presented here were all found by experimentation and 
graphical accuracy is present for all the cases discussed. 

As initial data for our problem suppose we assume that the interface G, is always 
the straight line x = - 1 while the interface C, is determined by 

x = 1 -A cos (7CZld). (3.18) 

Here d is the amplitude of the initial perturbation. Our plan is to examine several 
cases with different values of the parameters. Suppose we set d = 0.1, a = p = 10, 
V = 2.5 and d = in. Note that there is no contact-angle hysteresis for this case. I n  
figure 2 we sketch the initial data plus the interfaces C, and C, as functions of time. 
Here the system (3.2)-(3.4) and (3.15) was solved up to  time t = 0.25. Note that C ,  
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FIGURE 5. The bottom, x =,b, and top, x = a, ridge interfaces a t  t = 0, 0.1, 0.4, 0.5, 0.6. 0.625 

for A = 0.1, a = /3 = 10, V = 2.5 and d = 0.625~.  

advances down the inclined plane with increasing time while C, a t  first contracts to 
about x = 0.87 and then moves down the plane with the spanwise variation decaying 
with time. This evolution of the ridge is consistent with the linear stability analysis 
since Q = 4 1 / 2  > 1.9987 and hence we are in a stable regime. Prom figure 2 we see 
that the difference between the final values of a and b is approximately 1.41 x 
.\/2 = A , .  Hence the no-spanwise-variation solution (3.10) can be expected to be a 
good approximation. i n  particular in figure 3 we plot the value of A a t  y = 0 for thc, 
case in figure 2 along with the analytical solution (3.10) with A,  = 1.9. We see that 
for all time (3.10) is a good approximation to the numerical solution. 

In figure 4 we set d = :IT and keep the other parameters the same as in figure 2. We 
find that Q = 1/2 .  Thus value of Q is predicted to be unstable from the linear analysis 
(see I for specifics) and it is very close to the neutral stability curve. We see that as 
in figure 2 the initial disturbance moves forward along G, but is retracted along C, 
initially. The rate of change is considerably slower for this case but as with the case 
presented in figure 2 the initial perturbation eventually decays and we find that a 
stable ridge with no spanwise variation propagates down the plane. Hence this 
nonlinear case is stable. 

In  figure 5 we set d = 0.6251~ and again keep the other parameters as in figure 2. 
Once again the back interface C, initially advances down the inclined plane while the 
front interface C, in initially retracted. This time we see that the regions where A = 
a - b is the smallest will move with the fastest approach velocity and eventually these 
regions will touch. Numerically we do not actually see the touching, rather the region 
becomes very thin. Hence the periodic disturbance along the ridge will form a 
periodic array of droplets. Our computations end at  this critical breaking timc. The 
motion of a droplet along an inclined plane has been studied by others (eg.  Dussan 
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t = O  

0.075 x -0.7- x 1.2 

V. & Chow 1983). Note that Q = 4 2 1 3  < 1.1997 and hence this situation is linearly 
unstable.Our calculations show that this instability developed into the breakup of 
the ridge into droplets. In Huppert's (1982) experiments he noted two types of possible 
flows of an interface down an inclined plane, the sawtooth interface which coated and 
the fingering interface which did not coat. Here we find a similar situation. The small- 
d ridges will coat the plane with the disturbance decaying with time while the large-d 
ridges will form a periodic array of droplets which will only coat part of the plane. 
Also the width of the regions coated will depend only on the physical parameters 
related to the ridge and not to the initial perturbation. Other periodic initial 
perturbations besides (3.18) were tried in our 2d-periodic set-up on both C, and C, 
yet we always found that the wavelength of period 2d grew most quickly. Hence this 
nonlinear model does not select the mode of dominant growth but it does describe 
what happens after the selection is done. Later we shall discuss a linear stability 
analysis which will select the dominant growth mode. 

The effect of varying the other parameters had a similar behaviour and followed 
the predictions of the linear stability analysis, i.e. if Q = ( x / d )  (2V/a)i was large, we 
found stability while if Q was small the initial perturbation grew and droplets were 
formed. Hence the larger the static contact angle, the more unstable was the 
evolution of the ridge. Also large volumes V imply a stable evolution while surface 
tension will dominate for small volumes and droplets will form. 

The linear stability of a steadily moving ridge when there is contact-angle 
hysteresis was also discussed in I. The result is simply to replace a in the above 
formula for Q by f(a+P). Here we wish to discuss the initial-value problem. Suppose 
we set a = 10 and /3 = 8.5 with the rest of the parameters the same as in figure 5. The 
results are shown in figure 6. We see that initially the interface C ,  again retracts 
while C,  is again advancing forward. The rate of advance of C, is seen to be less than 
the advance of the case of figure 5, which has no hysteresis. At about t = 0.075 the 
interface G, stops. Hence the contact angle is now less than a. The back is still 
advancing and hence fluid begins to collect near the front C,. At about t = 0.175 the 
front C, beings to advance down the plane. The middle of C,  moves faster than the 
sides and as time increases the portion of C, in the neighbourhood of the sides will 
stop but the middle will continue to advance. The interface C,  continues to advance 
down the plane and eventually the regions between C, and c b  which are closest 
together will approach each other and droplets will form as expected from the linear 
stability analysis, since Q = 0.490. In  figure 7 we set /3 = 5.0 and keep the other 
parameters the same as in figure 6. Here we see that again the interface C, initially 
begins to move down the plane but this time the interface C ,  does not move. As times 
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FIUI~RE 7 .  The bottom, z = b ,  and top, 5 = a,  ridge interfaces a t  t = 0 ,  0.05, 0.1, 0.3, 0.5 for 

A = 0.1, a = 10, /3 = 5.0, V = 2.5 and d = 0.625n. The interface x = a does not move. 

increases the interface C, approaches an equilibrium position (given approximately 
by C, at  t = 0.5 as illustrated in figure 7 ) .  Hence the final solution for the ridge is a 
steady shape which does not move along the plane. In other words, with hysteresis 
it is possible to have a static ridge. 

4. Linear stability without assuming any contact-angle variation 
In $3  the variation of the contact angle as defined outside the immediate vicinity 

of the contact line was prescribed. As explained in the Introduction, this variation 
may be assumed to be a property of the materials concerned (Greenspan 1978) or one 
that can be deduced from the analysis of the slip region near the edge (Hocking 1981). 
In either case, the angle-velocity relationship introduces a velocity scale and hence 
a capillary number. But, in the first case, the capillary number is an external 
parameter and it is legitimate to consider the limit as the capillary number tends to  
zero, as is done in the quasi-static approximation used in $3  and in I. In  the second 
case, however, the capillary number associated with the angle-velocity relationship 
is not an assigned parameter but one that must be deduced from the analysis of the 
slip region near the edge, and its magnitude will depend on the slip length. Hence, 
in this case, it  is necessary to consider more carefully the validity of the quasi-static 
approximation. 

We restrict attention to the linear stability of the ridge, and we attempt to answer 
two questions. The first is t o  decide whether or not the model used in 93 is valid under 
the assumptions of this approach. That is, can we recover the linear stability results 
for the ridge as obtained by I and so justify the neglect of the slip region. The second 
question is to determine the relation between a complete solution for the ridge, in 
which the presence of the contact lines are fully taken into account, with the Troian 
et al. (1989) solution for the instability of the leading edge of an elongating sheet of 
fluid, in which there was no contact line but a preferred wavelength for the instability 
was obtained. 

The basic state whose stability is to be determined is that of a ridge of fluid in 
equilibrium. In  order to consider a sinusoidal perturbation, we must permit both 
edges to  move in either direction. Hence there can be no contact-angle hysteresis. On 
the other hand, we do not want to confine our attention to horizontal planes only, 
so different conditions are needed a t  the two edges. To achieve this aim, we suppose 
that the nature of the substrate under the top edge is different from that under the 
bottom edge, so that the contact angles a t  the two edges are different but constant. 
This is, of course, an artificial situation, but the main conclusion that we are trying 
to establish is expected to apply in more realistic circumstances. 
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We use the same non-dimensionalization as before, but now we choose the scales 
a, and a, so that P = 4 and keep K as a parameter that can take a range of values. 
We write 

The height h, of the ridge in the equilibrium position is given by 
V’=aia,d’, K=pgsinBai/(a,y) =@. (4.1) 

(4.2) 
and the bottom and top edges are a t  a = 1 and b = - 1.  The slopes a t  the two edges 
are then given hy 

h, = i( 1 - 2) + $kx( 1 - xZ), 

(4.3) 

The parameter k must lie in the range 0 < k d 1 for h, to be positive between the two 
edges. We consider for simplicity the special case when there is no hysteresis and, 
since the ridge is in equilibrium, the (scaled) contact angles are equal to $(l kk) .  

Our objective is to determine the linear stability of this equilibrium state, given 
that the slopes at each contact line remain constant. The boundary conditions for 
h(x, y, t )  a t  the upper edge, x = b(y, t ) ,  and a t  the lower edge, x = a(y, t ) ,  are 

h(b, y, t )  07 h(a> y, f) = 0, (4.4) 

The volume condition (2.7) now has the form 

The equation for h is no longer the quasi-steady one used in $ 3  but we have to employ 
the full version (2.1). We make a linear perturbation with wavelength 2nlq to the 
height h and to the position of the edges, so that they are given by 

h = h, + sh,(x) cos (qy) ewt, 

For an unbounded ridge, q can take any value and we can choose d = n/q ; for a ridge 
of width d,  we must have qd = rnn: for some integer m. Substituting these expressions 
into (2.1) and retaining only the terms of order e, we find that 

(4.8) 4 +h;(h,+h) (D2-qq2)2hl+hn(3h,+2h) Dho(D2-q2) Dh, = 0, 

where D = d/dx. 
The linearized forms of the boundary conditions (4.4) and (4.5) give the conditions 

h,( - 1 )  + b, Dh,( - 1)  = 0, b, D2h,( - 1 )  + Dh, ( - 1 )  = 0, (4.9) 
h,(l)+a,Dh,(l) = 0, -~,D2hn(l)-Dh,( l )  = 0. (4.10) 

From the known value of h,, a, and b, can be eliminated from these conditions and 
they can be replaced by the two conditions 

1 -3k 1 + 3 k  
l-lc 1 + k  

Dh,( - 1) = -- hl ( -1 )7  Dh,(l) = -h,(i). (4.1 1) 
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FIGURE 8. Stability diagram in the ( q ,  k)-plane. 

.o 

The volume condition (4.6) is automatically satisfied unless q = 0, in which case we 
have the condition 

1 ( h,dx = 0. (4.12) 
J -I 

This completes the formulation of the eigenvalue problem to determine the possible 
values of u. An eigenvalue with a positive real part indicates that the ridge is 
unstable. Although the equation for h, i s  linear, it  is of fourth order and has variable 
coefficients, so its solution is not simple. 

A neutral solution of this problem exists a t  each value of k if q is chosen 
appropriately. With w = 0, the solution of (4.8) for h, which does not have a 
singularity a t  the edges where h, is zero has the form 

h, = A cosh qx +B sinh qx, (4.13) 

where A and B are constants. Note that this solution does not depend on the slip 
coefficient A. The boundary conditions (4.11) then show that 

(I +q2) tanh(2q)-2q 
(9 + q2) tanh (2q)  - 6q . 

k2 = (4.14) 

In figure 8 we plot q as a function of k for 0 d k < 1 as given by (4.14) and we label 
the stable and unstable regions of the (q, I%)-plane. Note that the ridge is always 
unstable for small values of q.  Also note that this neutral stability curve is 
independent of the value of the slip parameter A. Hence the range of unstable 
wavenumbers is independent of h but there can be a different most unstable 
wavenumber for each A. The task is to determine the values of q for which the growth 
rate of the instability is largest. 

The linear eigenvalue problem (4.8) and (4.11) can be solved numerically for a given 
value of q. This is done by discretizing the differential equation (4.8) using a 
Chebychev pseudo-spectral approximation of the derivatives (see e.g. Canuto et al. 
1988), and forcing the boundary condition (4.11) at x = - 1 and the additional 
condition that dhJdx = 1 at x = 1 .  The latter is allowed as long as the derivative is 
non-zero a t  x = 1 since the solution is unknown up to a multiplicative constant. Then 
for a given value of w this linear system can be solved for the unknown values of h,. 
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FIGURE 9. Most unstable eigenvalue o versus thc wavenumber p determined from (4.8) and 

(4.11) for k = 0.25, 0.5, 0.75 and h = 0.01. 

The boundary condition (4.11) a t  x = 1 is then checked and the procedure is repeated 
for a different guess of 0) until the boundary condition (4.11) a t  x = 1 is satisfied to 
sufficient accuracy. 

The advantage of the Chebychev pseudo-spectral approximation is that it gives a 
very good approximation of the derivatives in the neighbourhood of the contact 
lines. In  order to increase the accuracy in this neighbourhood we have also 
introduced a stretching of the independent variable x = tanh (&s)/tanh (Oi). Usually 
Oi was set to  2. We note that the equation is never forced a t  the contact line itself and 
hence only h, and its first derivative are required there. A local analysis about the 
contact line (see $5) reveals that h, behaves like (x- 1)2 In (1 - x )  in the neighbourhood 
of the contact line a t  x = 1 ; a similar behaviour holds near x = - 1 .  This implies that 
the second derivative of h will tend to infinity as we approach the contact line and 
the numerical methnd will try to capture this singularity. We find that h, and dh,/dr 
converge very well while the other derivatives tend to infinity there. Since we never 
force the differential equation at  the contact line we are not trying to approximate 
the infinity and numerical tests indicate a convergence of the height h, and its first 
derivative all along the interval and a t  the contact line. For a fixed value of x 
between - 1 and 1 we also see convergence of the higher derivatives as we increase 
the number of collocation points. 

In  figure 9 we sketch the first eigenvalue o as a function of the wavenumber q for 
k = 0.25, 0.5 and 0.75 and for h = 0.01. We see that, as k increases, the magnitude 
of the maximum eigenvalue, om, increases. The value of q at the maximum w ,  say qm, 
also increases with k but only slightly. Note that k is a measure of the difference 
between the contact angles at the top and the bottom of the ridge. 

Changing the value of the slip parameter has a twofold effect. First it decreases the 
value of the eigenvalue o for a given q and secondly it lowers the value of qm. Hence 
the slip parameter A does have a significant effect on the preferred wavelength. 
Unfortunately as we decrease A we must also increase the number of collocation 
points in order to get a converged eigenvalue. In particular for h = lW4 we need 320 
collocation points in order to get two-decimal-placr accuracy. Dwreasing h further 
requires additional collocation points. Hcnce an alternat,ive approach is required to 
solve this eigenvalue problem for very small A. In $ 5  we will use an asymptotic 
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analysis for these small values of h which together with the numerical solution gives 
a complete picture of the behaviour of the eigenvalues and in particular the preferred 
wavenumber for the instability qm, 

These results indicate that there is indeed a preferred wavelength of the instability 
and to this extent they are parallel to the results Troian et al. (1989) for the 
elongating sheet. In both cases, however, this wavelength is not precisely determined. 
In the present case it depends logarithmically on the slip coefficient. In Troian's case, 
it  was a weak function of the height of the film that was assumed t o  extend down the 
plane ahead of the leading edge of the advancing sheet. Hence the second of the two 
questions posed in this section has been answered. 

There remains the question about the validity of the neglect of the slip region and 
the consequent failure to predict a preferred wavelength for the instability. This 
suggests the need for an improved treatment of the slip region. On the other hand, 
it seems at  least plausible that the model of I is correct when the slip region is very 
small, that is, in the limit as h + 0. The numerical work described in this section could 
not determine this limiting behaviour, because to find the solution for very small 
values of h means that it is necessary to take a very large number of terms in the 
spectral series. Hence there is a computational limitation in this procedure that 
prevent8 the limiting situation from being achieved. The remedy is to analyse the slip 
region separately from the locations in the width of the ridge where slip can be 
neglected. 

5. Asymptotic solution for A + 0 
The eigenvalue problem is specified by (4.8) with h, given by (4.2). The two 

boundary conditions (4.1 1) are sufficient for the fourth-order equation, since they 
imply that h, and Dh, are bounded a t  the two edges. In this section, we take q and 
k to be O(1) as h+O and find the asymptotic value of w .  We first consider inner 
regions of width h a t  both edges. 

If we write x = 1 - A [ ,  the static solution (4.2) for h, when ( is of order one becomes 

h, = ~ ( l + k ) h ( + O ( h 2 ) ,  (5.1 ) 

and the solution for h to order h can be written as 

where 

1 d 

Because the boundary condition (4.1 1) is homogeneous, any multiple of this solution 
is permissible. If we integrate three times to determine f and find the asymptotic 
form of t,he solution as (+ co, we can apply a matching principle to show that the 
outer solution as x+ 1 must be a multiple of 

2 
In ( A )  - In (1  -2) +In [-I} (5.4) 

3(1 + k )  ' 
1 +3k 8 0  

h+- 27( 1 + k ) 3  
1-- (1-4- 

neglecting terms O(h1nh). In the same way we can show that the outer solution as 
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x+ - 1 must be a multiple of k-, which can be found from h, by changing the signs 
of k and of x whenever they occur in (5.4). 

In the outer region x is of order one, and (4.8) to leading order in h can be written 
as a pair of coupled equations of the form 

D(htDG)-q2h;G+wH = 0, D211-q2H = G, (5 .5)  

where D = d/dx and h, is given in (4.2). The boundary conditions are provided by 
(5.4) for h, and its companion form for h-. Thus, as x+ 1, 

I H = c+,  

--- (i+3k: ri . . 3( l+k)  \ 11 -+ 1 +In ( 1  - ‘x’jf ’ } (5.6) 

8W 1 
%7(1+ k ) 3  1 -x ’ 

and, as z-+-l ,  
H = c-, 

J 

where 
E = l/llnhl G 1,  0 d k < 1, q 2 0. (5.8) 

Our objective is to determine the eigenvalue o) as a function of k and q for small 
values of E .  

Because there is no longer any necessity to resolve the regions of order h near the 
two edges, the numerical solution of (5.5) is much simpler than that of (4.8) when h 
is small enough for 8 to be regarded as a small quantity. A t  the edges, G and D2H are 
singular, but H and hi DG are not singular there. We will solve (5 .5)  by applying the 
same Chebychev pseudo-spectral method as described in 54. Since the boundary 
conditions (5.6) and (5.7) are a result of the matching principle we will apply them 
at a fixed but small distance, 6, from the boundaries. Hence the interval where (5.5) 
holds is smaller and we map it onto [ - 1 , 1 ]  using the change of independent variable 
s = x/( l  - 8). Then following the numerical method outlined in $4 we force at  s = - 1 
the boundary conditions (5.7) to hold while a t  s = 1 we set H = 1 and require the 
condition on the first derivative of H in (5.6) to hold. The eigenvalue w is determined 
by checking to see if the condition on the second derivative in (5.6) is satisfied a t  
s = 1 .  Since there were no longer any singularities a t  the end points of the 
computational domain this method converged very well as the number of collocation 
points increased. For example, for k = 0.5, 6 = 0.01, q = 0.975 and for h = 0.01 we 
find that the new asymptotic method predicts that w = 0.445 for 40 collocation 
points while the method of $4 predicts w = 0.451 (here we set Oi = 2). The converged 
result is w = 0.446 to three decimal places. If we set h = 0.0001 and keep the other 
parameters the same we find that again for 40 collocation points the asymptotic 
method gives w = 0.332, the converged result, while the calculation of $4 gives w = 
0.377. As h decreases, more and more collocation points are necessary for the method 
of $4 while the numerical accuracy of the asymptotic method is only weakly 
dependent on A. We should note that the correct answer must be independent of 6 
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FIGURE 10. Most unstable eigenvalue w versus the wavenumber q determined from (5.5)--(5.7) 
for h = lo-', 10-l' and k = 0.5. 

but clearly this method is dependent on the distance parameter 6 and hence an error 
is introduced. This error tends to zero as 6 tends to zero, so we need to select 6 
sufficiently small. Through a series of numerical tests we have found that setting 
6 = 0.01 gives graphical accuracy over a wide range of h using 40 collocation points. 
In figure 10 we plot the eigenvalue w as a function of the wavenumber q for k = 0.5 
and 6 = 0.01. We note that w, and qm both decrease with decreasing A. Also as noted 
in figure 8 the unstable range of values of q is independent of A. 

The solutions of (5.5) for small values of E posed no particular difficulty, and it was 
found that the value of o was approximately proportional to e and then that w had 
a maximum as a function of q, with w = 0 when q = 0. On the other hand, we can 
consider the asymptotic solution of (5.5) for small E .  In  this limit, G = 0 and 

H = A cosh qz + B sinh qx, (5.9) 

and the boundary conditions (5.6) and (5 .7 )  then give an equation for 52 = € 4 ~ 1 2 7 ~  
in the form 

52' tanh (2p) + 2SZ{q( 1 + 3k2)  - (1 + 7k2) tanh (2q)) 

+ (1 - k 2 ) 2  tanh (2q) {q2( 1 - k 2 )  + 1 - 9k2} - 2g( 1 - k2)2(  1 - 3k2)  = 0. (5.10) 

This equation is similar to  that found in I when the presence of the edge regions was 
represented by an assumed velocity-dependent variation of the contact angle outside 
these regions. There is instability for all q less than a critical value that is a function 
of k .  This is determined by setting 52 to zero and we then recover (4.14). Also, we note 
that SZ has a maximum value SZc when p = 0, where 52, is the positive root of the 
equation 

a z - ( 1 + 1 ~ k 2 ) 5 2 - 6 k 2 ( 1 - k 2 ) 2  = 0. (5.11) 

This limiting behaviour as E + O  was not obtained by the numerical solution for a 
small value of h in $4, but the solutions of (5.5) for small E do confirm that w is O ( e ) .  

In  order to remove the discrepancy between the numerical solutions for small 8 and 
the asymptotic limit as E + 0, we consider the solution of (5.5) when both e and q are 
small. If we write w = 27e52/8 and q = dQ, the equations (5.5) become 

D ( h ~ D G ) - E Q 2 h ~ G + ~ d 2 H ,  D2H-eQ2H = G. (5.12) 
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If we expand G and H in powers of e and write G = Go+eG, + ..., H = H,, +€al+ ..., 
the leading-order solution is 

Go= 1, Ha = + ( X " ~ ) + ~ ( C ~ - C ~ ) X + ~ ( C , + C , ) ,  (5.13) 

and the boundary conditions (5.6) and (5.7) to this order give the equations 

l - k  2 (1 -k )3  nl, 2 
1-3k 1 +1= 1.  

D(h: DG,) - Q2h:G0 +y5?52Ho = 0. 
The equation for G, is 

(5.14) 

(5.15) 

(5.16) 

From the boundary conditions on G, given in (5.6) and (5.7), it follows that 
H:DG, = 0 at x = 1, so we can integrate (5.16) to obtain 

1 1 

Q2 J-, h: Go dz = 762 J-l Ha dx. (5.17) 

When the known values of ha, Go and Ha are substituted into this equation together 
with the values of c1 and c2 determined from (5.14) and (5.15), we obtain an equation 
for Q as a function of SZ and k in the form 

2( 1 - k2) +" 
6k2(1-k2)2+52(1+11k2)-!22 

(5.18) 

This equation shows that, as & + O ,  SZ - Q and as Q +  00, sZ+Qn,. In terms of the 
unscaled variables, this means that, for small values of q / d ,  

k( (  1 + &2) (1 - k2) e}i q,  
81 

4 1/70 
WN- (5.19) 

and, as q/ei + 00, w + 4&Qc, which agrees with the limiting value of w as q -+ 0 found 
from (5.10). 

It follows that, as e+O, there is a maximum growth rate of the instability of order 
6,  but this occurs when the wavenumber q is of the order 6;. The method of I is correct 
in the limit as the slip length tends to zero, but absurdly small values must be chosen 
if the limiting solution is to be obtained numerically. If q = 0.1, we must take e of 
order lo-' and then h is of order The analysis and the numerical results in $4, 
which predict a preferred growth rate a t  a wavenumber that is not small, are seen to 
be true, provided that the chosen value of h is not so small that e = l/llnA( is also 
small. 

6. Conclusions 
The first part of this paper has examined the nonlinear development of a 

perturbation to the positions of the edges of a ridge of fluid sliding down an inclined 
plane. The numerical solutions were based on the quasi-steady hypothesis and 
assumed that the influence of the regions close to the contact lines on the flow outside 
them could be represented by assuming a dynamic variation of the contact angle. 
Although the linear solution based on this assumption predicts an instability of the 
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edge positions, the maximum growth occurs when the wavenumber is as small as 
possible. The nonlinear numerical solution, however, showed that, in the unstable 
region, there was a lateral transfer of fluid into lobes that grew in size, while the 
depleted portions shrunk until the leading and trailing edges made contact. 

In the second part, the quasi-steady assumption was not assumed and the basic 
assumption concerning the regions near the contact lines was replaced by taking the 
dynamics in these regions fully into account. With a model that includes a slip 
region, but without assuming any variation in the contact angle, i t  was shown that 
it was possible to replace these regions by suitable boundary conditions. This is, of 
course, precisely what was done in the first model, but the key difference is that the 
relevant parameters in the boundary conditions to be imposed is e rather than A,  
where h iR the slip length and e = l/llnhl. We have shown that the first model is 
correct in the limit e-t  0, but that this limit is not approached with any reasonable 
choice of A. The second model requires h to be small, but the numerical value of e 
can be of order one. Because the solution depends on the value of e, it is important 
to consider the slip regions in order to establish the way in which the replacement 
boundary conditions depend on e. We should note that other slip models were 
considered and similar results were found, It is expected that similar conclusions will 
follow if a slip-velocity ~ contact-angle relation were assumed a t  the contact line in 
place of the fixed-angle assumption. Hence the quasi-steady assumption, which 
neglects the effect of viscous forces in the outer region, can be recovered in the limit 
as e tends to zero and is responsible for the difference between I and the linear 
stability results presented here. 
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